
Reward Machines for Cooperative Multi-Agent
Reinforcement Learning

Cyrus Neary ∗ Zhe Xu ∗ Bo Wu ∗ Ufuk Topcu ∗ †

Abstract

In cooperative multi-agent reinforcement learning, a collection of agents learns
to interact in a shared environment to achieve a common goal. We propose the
use of reward machines (RM) — Mealy machines used as structured represen-
tations of reward functions — to encode the team’s task. The proposed novel
interpretation of RMs in the multi-agent setting explicitly encodes required team-
mate interdependencies and independencies, allowing the team-level task to be
decomposed into sub-tasks for individual agents. We define such a notion of RM
decomposition and present algorithmically verifiable conditions guaranteeing that
distributed completion of the sub-tasks leads to team behavior accomplishing the
original task. This framework for task decomposition provides a natural approach
to decentralized learning: agents may learn to accomplish their sub-tasks while
observing only their local state and abstracted representations of their teammates.
We accordingly propose a decentralized q-learning algorithm. Furthermore, in the
case of undiscounted rewards, we use local value functions to derive lower and
upper bounds for the global value function corresponding to the team task. Experi-
mental results in three discrete settings exemplify the effectiveness of the proposed
RM decomposition approach, which converges to a successful team policy two
orders of magnitude faster than a centralized learner and significantly outperforms
hierarchical and independent q-learning approaches.

1 Introduction

In multi-agent reinforcement learning (MARL), a collection of agents learn to maximize expected
long-term return through interactions with each other and with a shared environment. We study
MARL in a cooperative setting: all of the agents are rewarded collectively for achieving a team task.

Two challenges inherent to MARL are coordination and non-stationarity. Firstly, the need for
coordination between the agents arises because the correctness of any individual’s actions may
depend on the actions of its teammates [3, 10]. Secondly, the agents are learning and updating their
behaviors simultaneously. Thus from the point of view of any individual agent, the learning problem
is non-stationary; the best solution for any individual is constantly changing [11].

A reward machine (RM) is a Mealy machine used to define tasks and behaviors dependent on
abstracted descriptions of the environment [14]. Intuitively, RMs allow agents to separate tasks into
stages and to learn different sets of behaviors for the different portions of the overall task. In this
work, we use RMs to describe cooperative tasks and we introduce a notion of RM decomposition
for the MARL problem. The proposed use of RMs explicitly encodes the information available to
each agent, as well as the teammate communications necessary for successful cooperative behavior.
The global (cooperative) task can then be decomposed into a collection of new RMs, each encoding
∗Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX.
†Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin,

TX. Contact: {cneary, bwu3, utopcu}@utexas.edu, xuzhehappy@gmail.com.

Preprint. Under review.

ar
X

iv
:2

00
7.

01
96

2v
1

 [
cs

.M
A

]
 3

 J
ul

 2
02

0

a sub-task for an individual agent. We propose a decentralized learning algorithm that trains the
agents individually using these sub-task RMs, effectively reducing the team’s task to a collection of
single-agent reinforcement learning problems. The algorithm assumes each agent may only observe
its own local state and the information encoded in its sub-task RM.

Furthermore, we provide conditions guaranteeing that if each agent accomplishes its sub-task, the
corresponding joint behavior provably accomplishes the original team task. Finally, decomposition
of the team’s task allows for each agent to be trained independently of its teammates and thus
addresses the problems posed by non-stationarity. Individual agents learn to condition their actions
on abstractions of their teammates, eliminating the need for simultaneous learning.

Experimental results in three discrete domains exemplify the strengths of the proposed decentralized
algorithm. In a two-agent rendezvous task, the proposed algorithm converges to successful team
behavior a factor of 200 times faster than a centralized learner and performs roughly on par with
hierarchical independent learners (h-IL) [30]. In a more complicated temporally extended three-
agent task, the proposed algorithm quickly learns effective team behavior while neither h-IL nor
independent q-learning (IQL) [29] converge to policies completing the task.

2 Preliminaries

A Markov decision process (MDP) is a tupleM = 〈S,A, r, p, γ〉 consisting of a finite set of states
S, a finite set of actions A, a reward function r : S ×A× S → R, a transition probability function
p : S × A → ∆(S), and a discount factor γ ∈ (0, 1]. Here ∆(S) is the set of all probability
distributions over S. We denote by p(s′|s, a) the probability of transitioning to state s′ from state s
under action a. A stationary policy π : S → ∆(A) maps states to distributions over actions.

The goal of reinforcement learning (RL) is to learn an optimal policy π∗ maximizing expected
future discounted reward from any state [28]. The q-function for policy π is defined as the expected
discounted future reward that results from taking action a from state s and following policy π
thereafter. Tabular q-learning [33], an RL algorithm, uses the experience {(st, at, rt, st+1)}t∈N0 of
an agent interacting with an MDP to learn the q-function q∗(s, a) corresponding to an optimal policy
π∗. Given q∗(s, a), the optimal policy may be recovered.

A common framework used to extend RL to a multi-agent setting is the Markov game [21, 3]. A
team Markov game of N agents is a tuple G = 〈S1, ..., SN , A1, ..., AN , p, R, γ〉. Si and Ai are
the finite sets of agent i’s local states and actions respectively. We define the set of joint states
as S = S1 × ... × SN and we similarly define the set of joint actions to be A = A1 × ... × AN .
p : S × A → ∆(S) is a joint state transition probability distribution. R : S × A × S → R is the
team’s collective reward function which is shared by all agents, and γ ∈ (0, 1] is a discount factor.

In this work, we assume the dynamics of each agent are independently governed by local transition
probability functions pi : Si × Ai → ∆(Si). The joint transition function is then constructed as
p(s′|s,a) = ΠN

i=1pi(s
′
i|si, ai), for all s, s′ ∈ S and for all a ∈ A. A team policy is defined as

π : S → ∆(A). Analogous to the single agent case, the objective of team MARL is to find a team
policy π∗ that maximizes the expected discounted future reward from any joint state s ∈ S.

3 Reward Machines for MARL

To introduce reward machines (RM) and to illustrate how they may be used to encode a team’s task,
we consider the example shown in Figure 1a. Three agents, denoted A1, A2, and A3, operate in a
shared environment with the objective of allowing A1 to reach the goal location denoted G. However,
the red, yellow, and green colored areas are unsafe for agents A1, A2, and A3 respectively; if one
of the agents moves into their colored region before the button of the corresponding color has been
pressed, the team fails the task. Furthermore, the yellow and green buttons may be pressed by an
individual agent, but the red button requires two agents to simultaneously occupy the button’s location
before it is activated. The dashed and numbered arrows in the figure illustrate the sequence of events
necessary for task completion: A1 should push the yellow button allowing A2 to proceed to the green
button, which is necessary for A3 to join A2 in pressing the red button, finally allowing A1 to cross
the red region and reach G.

2

(a) Cooperative buttons domain. (b) Reward machine encoding the cooperative buttons task.

Figure 1: The multi-agent buttons task. In Figure (a), the colored circles denote the locations of the
buttons, the thick black areas are walls the agents cannot cross, and the numbered dotted lines show
the order of high-level steps necessary to complete the task. The set of events of the RM in (b) is
Σ = { 2 , 2\ , 3 , 2\ , , , , , , , G}.

3.1 Reward Machines for Task Description

Definition 1. A reward machine (RM) R = 〈U, uI ,Σ, δ, σ〉 consists of a finite, nonempty set
U of states, an initial state uI ∈ U , a finite set Σ of environment events, a transition function
δ : U × Σ→ U , and an output function σ : U × U → R.

Reward machines are a type of Mealy machine used to define temporally extended tasks and behaviors
[14]. Figure 1b illustrates the RM encoding the buttons task.

Set Σ is the collection of all the high-level events necessary to describe the team’s task. For example,
∈ Σ corresponds to the event thatA1 has moved into the unsafe red region, and ∈ Σ corresponds

to the event of the red button being pressed. Because both A2 and A3 must simultaneously press
the red button for the event to occur, we additionally include the events 2 , 2\ , 3 , 3\ in Σ, which
represent A2 or A3 individually either pressing or not pressing the red button.

The states u ∈ U of the RM represent different stages of the team’s task. Transitions between RM
states are triggered by events from Σ. For example, the buttons task starts in state uI . From this state,
if one of the dangerous colored regions are entered, the corresponding event , , or will cause a
transition to state u8 from which there are no outgoing transitions; the team has failed the task, so it
does not progress from this state. If instead A1 presses the yellow button, then the event will cause
the RM to transition to state u1; A2 may now safely proceed across the yellow region. In this way,
transitions in the RM represent progress through the task.

Output function σ assigns reward values to these transitions. In this work, we restrict ourselves to
task completion RMs, similar to those studied in [34]; σ should only reward transitions that result in
the immediate completion of the task. To formalize this idea, we define a subset F ⊆ U of reward
states. If the RM is in a state belonging to F , it means the task is complete. The output function
is then defined such that σ(u, u′) = 1 if u /∈ F and u′ ∈ F , and is defined to output 0 otherwise.
Furthermore, there should be no outgoing transitions from states in F . In Figure 1b, F = {u7}. If
the event G ∈ Σ occurs while the RM is in state u6 the task has been successfully completed; the
RM will transition to state u7 and return reward 1.

A run of RMR on the sequence of events e0e1...ek ∈ Σ∗ is a sequence u0e0u1e1...ukekuk+1, where
u0 = uI and ut+1 = δ(ut, et). If uk+1 ∈ F , then σ(uk, uk+1) = 1. In this case we say that the event
sequence e0...ek completes the task described byR, and we denote this statementR(e0...ek) = 1.
Otherwise,R(e0...ek) = 0. For example,R(2 3 G) = 1, butR() = 0.

3.2 Labeling Functions and Q-Learning with Reward Machines

RMs may be applied to the RL setting by using them to replace the reward function in an MDP.
However, RMs describe tasks in terms of abstract events. To allow an RM to interface with the
underlying environment, we define a labeling function L : S × U → 2Σ, which abstracts the current
environment state to sets of high-level events. Note, however, that L also takes the current RM state

3

u ∈ U as input, allowing the events output by L to depend not only on the environment state, but also
on the current progress through the task.

Q-learning with RMs (QRM) [14] is an algorithm that learns a collection of q-functions, one for
each RM state u ∈ U , corresponding to the optimal policies for each stage of the task. At time step
t, the agent uses the RM state ut and its estimate of qut

(st, ·) to select action at. The environment
accordingly progresses to state st+1. The events output by L(st+1, ut) then cause the RM to
transition to state ut+1, and the corresponding reward output by σ is used to update qut(st, at) (see
supplementary materials §8). The QRM algorithm is guaranteed to converge to an optimal policy.

A naive approach to applying RMs in the MARL setting would be to treat the entire team as a single
agent and to use QRM to learn a centralized policy. This approach quickly becomes intractable,
however, due to the exponential scaling of the number of states and actions with the number of agents.
Furthermore, it assumes agents communicate with a central controller at every time step, which may
be undesirable from an implementation standpoint.

3.3 Team Task Decomposition

A decentralized approach to MARL treats the agents as individual decision-makers, and therefore
requires further consideration of the information available to each agent. In this work, we assume the
ith agent can observe its own local state si ∈ Si, but not the local states of its teammates. Given an
RMR describing the team’s task and the corresponding event set Σ, we assign the ith agent a subset
Σi ⊆ Σ of events. These events represent the high-level information that is available to the agent. We
call Σi the local event set of agent i. We assume that all events represented in Σ belong to the local
event set of at least one of the agents, thus

⋃N
i=1 Σi = Σ.

For example, in the three-agent buttons task, the local event set assigned toA1 is Σ1 = { , , , G};
A1 should avoid the red region, has access to the yellow button, must know when the red button has
been pressed, and should eventually proceed to the goal location. Note that, for example, events

and are not included in Σ1 because these regions are not dangerous to A1, and because A1 is
separated from these colored regions by the walls in the environment. Similarly, event is not in Σ1

because for A1, it is only an intermediate step in the process of pressing the red button. Similarly, the
event sets of A2 and A3 are Σ2 = { , , , 2 , 2\ , } and Σ3 = { , , 3 , 3\ , }, respectively.

Extending the definition of natural projections on automata [16] to reward machines, for each agent
i, we define a new RM, Ri = 〈Ui, u

i
I ,Σi, δi, σi, Fi〉, called the projection of R onto Σi. A formal

definition of Ri is provided in the supplementary materials §9. Intuitively, the projection may be
constructively defined as follows:

1. Remove all transitions triggered by events not contained in Σi.
2. To define the projected states Ui, merge all states connected by a removed transition.
3. The remaining transitions are used to define the projected transition function δi.
4. The reward states Fi are defined as the collections of merged states containing at least one

reward state u ∈ F from the original RM. Output function σi is defined accordingly.

Figures 2a, 2b, and 2c show the results of projecting the task RM from Figure 1b onto the lo-
cal event sets of Σ1, Σ2, and Σ3 respectively. As an example we specifically examine R1 =
〈U1, u

1
I ,Σ1, δ1, σ1, F1〉, illustrated in in Figure 2a. Because events , , , 2 , 2\ , 3 , and 3\ are

not elements of Σ1, any states connected by these events are merged to form the projected states U1.
For example, states u1, u2, u3, u4, u5 ∈ U which comprise the diamond structure in Figure 1b, are
all merged into projected state u1

1 ∈ U1. Intuitively, this portion of the team’s RM R encodes the
necessary coordination between A2 and A3 to press the red button, which is irrelevant to A1’s portion
of the task and is thus represented as a single state inR1. Note thatR1 describes A1’s contribution
to the team’s task; press the yellow button then wait for the red button to be pressed while avoiding
the red region, before proceeding to the goal location. Intuitively, this high-level behavior is correct
with respect to the team task, regardless of the behavior A2 or A3.

Consider some finite event sequence ξ = e0...ek ∈ Σ∗. The projection of ξ onto Σi, denoted ξi ∈ Σ∗i ,
is obtained by removing all events from ξ that are not in Σi (see supplementary material §9). ξi may
be thought of as the event sequence ξ from the point of view of the ith agent.

Theorem 1 defines a condition guaranteeing that the composition of the individual behaviors described
by the projected RMs is equivalent to the behavior described by the original team RM. This condition

4

(a) Σ1 = { , , , G} (b) Σ2 = { , , , 2 , 2\ , } (c) Σ3 = { , , 3 , 3\ , }

Figure 2: Projections of the team RM, illustrated in Figure 1b, onto the local event sets Σ1, Σ2, Σ3.

uses the notions of bisimilarity and parallel composition, common concepts for finite transition
systems [1], that are formally defined for RMs in supplementary materials §9.

Theorem 1. Given RMR and a collection of local event sets Σ1, Σ2, ..., ΣN such that
⋃N

i=1 Σi = Σ,
letR1,R2, ... RN be the corresponding collection of projected RMs. SupposeR is bisimilar to the
parallel composition ofR1,R2, ... RN . Then given an event sequence ξ ∈ Σ∗,R(ξ) = 1 if and only
ifRi(ξi) = 1 for all i = 1, 2, ..., N . Otherwise,R(ξ) = 0 andRi(ξi) = 0 for all i = 1, 2, ...N .

We note that [16, 17] present conditions, in terms of R and Σ1, Σ2, ... ΣN , which may be applied
to check whether R is bisimilar to the parallel composition of its projections R1, R2, ..., RN .
Alternatively, one may computationally check whether this result holds by constructing the parallel
composition of the projected RMs and applying the Hopcroft-Karp algorithm to check equivalence
withR [13, 2].

4 Decentralized Q-Learning with Projected Reward Machines (DQPRM)

Inspired by Theorem 1, we propose a distributed approach to learning a decentralized policy. Our
idea is to use the projected RMs to define a collection of single-agent RL tasks, and to train each
agent on their respective task using the QRM algorithm described in §3.2.

For clarity, we wish to train the agents using their projected RMs in an individual setting: the agents
take actions in the environment in the absence of their teammates. However, the policies they learn
should result in a team policy that is successful in the team setting, in which the agents interact
simultaneously with the shared environment.

4.1 Local Labeling Functions and Shared Event Synchronization

Projected reward machineRi defines the task of the ith agent in terms of high-level events from Σi.
As discussed in §3.2, to connectRi with the underlying environment, a labeling function is required
to define the environment states that cause the events in Σi to occur. In the team setting, we can
intuitively define a labeling function L : S × U → 2Σ mapping team states s ∈ S and RM states
u ∈ U fromR to sets of events. For example, L(s, u) = { } if s is such that A2 and A3 are pressing
the red button and u = u5.

To use Ri in the individual setting however, we must first define a local labeling function Li :
Si ×Ai → 2Σi mapping the local states si ∈ Si and projected RM states ui ∈ Ui to sets of events in
Σi. Operating under the assumption that only one event can occur per agent per time step, we require
that, for any local state pair (si, u

i), Li(si, u
i) returns only a single event from Σi. Furthermore, the

local labeling functions L1, L2,..., LN should be defined such that they always collectively output
the same set of events as L, when being used in the team setting.

For a given event e ∈ Σ, we define the set Ie = {i|e ∈ Σi} as the collaborating agents on e.

Definition 2. (Decomposable labeling function) A labeling function L : S × U → 2Σ is considered
decomposable with respect to local event sets Σ1, Σ2, ..., ΣN if there exists a collection of local
labeling functions L1, L2, ..., LN with Li : Si × Ui → 2Σi such that L(s, u) outputs event e if and
only if Li(si, u

i) outputs event e for every i in Ie, the set of collaborating agents on event e. Here, si

5

is the ith component of the team’s joint state s, and ui ∈ Ui is the state of RMRi containing state
u ∈ U from RMR (recall that states in Ui correspond to collections of states from U).

Note that L will be decomposable if we can constructively define L1, ..., LN to satisfy the condition
in Definition 2. Following this idea, we construct Li from L as follows: Li(s̄i, u

i) outputs event
e ∈ Σi whenever there exists a possible configuration of agent i’s teammates s = (s1, ..., s̄i, ..., sN)
such that L(s, u) outputs e, here u ∈ U is any state belonging to ui ∈ Ui. Our interpretation of this
definition of Li is as follows. While L(s, u) outputs the events that occur when the team is in joint
state s and RM state u, the local labeling function Li : Si ×Ai → 2Σi outputs the events in Σi that
could be occurring from the point of view of an agent who knows L, but may only observe part of
the function’s input: si ∈ Si and ui ∈ Ui. A formal definition of Li as well as conditions on L that
ensure Li is well defined are given in supplementary material §10.

We say event e ∈ Σ is a shared event if it belongs to the local event sets of multiple agents, i.e., if
|Ie| > 1. In the buttons task, ∈ Σ1 ∩ Σ2 is an example of a shared event. Suppose A1 and A2 use
the events output by L1 and L2, respectively, to update R1 and R2, while interacting in the team
setting. Because Σ1 and Σ2 both include the event , the agents must syncrhonize on this event:

should simultaneously cause transitions in both projected RMs, or it should cause a transition in
neither of them. In practice synchronization on shared events is implemented as follows: If Li returns
a shared event e, the ith agent should check with all teammates in Ie whether their local labeling
functions also returned e, before using the event to updateRi. Event synchronization corresponds to
the agents communicating and collectively acknowledging that the shared event has occurred.

Given a sequence of joint states s0s1...sk in the team setting, we may use L andR to uniquely define
a corresponding sequence L(so...sk) ∈ Σ∗ of events. Similarly, given the corresponding collection
of sequences {si0...sik}Ni=1 of local states, local labeling functions L1, ..., LN , and assuming that the
agents synchronize on shared events, we may define the corresponding sequences Li(s

i
0...s

i
k) ∈ Σ∗i

of events for every i = 1, 2, ..., N (see supplementary material §10).
Theorem 2. Given R, L, and Σ1, ..., ΣN , suppose the bisimilarity condition from Theorem 1
holds. Furthermore, assume L is decomposable with respect to Σ1, ... ΣN with the corresponding
local labeling functions L1, ..., LN . Let s0...sk be a sequence of joint environment states and
{si0...sik}Ni=1 be the corresponding sequences of local states. If the agents synchronize on shared
events, thenR(L(s0...sk)) = 1 if and only ifRi(Li(s

i
0...s

i
k)) = 1 for all i = 1, 2, ..., N . Otherwise

R(L(s0...sk)) = 0 andRi(Li(s
i
0...s

i
k)) = 0 for all i = 1, 2, ..., N .

Let V π(s) denote the expected future undiscounted reward returned byR, given the team follows
joint policy π from joint environment state s ∈ S and initial RM state uI . Similarly, let V π

i (s) denote
the expected future reward returned byRi, given the team follows the same policy from state s and
projected initial RM state uiI . Using the Fréchet conjunction inequality, we provide the following
upper and lower bounds on the value function corresponding toR, in terms of the value functions
corresponding to projected RMsRi.
Theorem 3. Suppose the conditions in Theorem 2 are satisfied, then

max{0, V π
1 (s) + V π

2 (s) + ...+ V π
N (s)− (N − 1)} ≤ V π(s) ≤ min{V π

1 (s), V π
2 (s), ..., V π

N (s)}.

4.2 Training and Evaluating

Theorem 2 tells us that it makes no difference whether we use RMR and team labeling function L,
or projected RMsR1,...,RN and local labeling functions L1, ..., LN to describe the team task. By
replacingR and L withR1, ...,RN and L1, ..., LN however, we note that the only interactions each
agent has with its teammates are synchronizations on shared events.

This key insight provides a method to train the agents separately from their teammates. We train
each agent in an individual setting, isolated from its teammates, using rewards returned fromRi and
events returned from Li. Whenever Li outputs what would normally be a shared event in the team
setting, we simulate a synchronization signal after some random amount of time.

During training, each agent individually performs q-learning to find an optimal policy for the sub-task
described by its projected RM, similarly to as described in §3.2. The ith agent learns a collection of
q-functions Qi = {qui |ui ∈ Ui} such that each q-function qui : Si × Ai → R corresponds to the
agent’s optimal policy while it is in projected RM state ui.

6

To evaluate the learned policies, we test the team by allowing the agents to interact in the team
environment and evaluate the team’s performance using team task RMR. Each agent tracks its own
task progress using its projected RMRi and follows the policy it learned during training. For further
details, see supplementary material §12.

5 Experimental Results

In this section, we provide empirical evaluations of DQPRM in three task domains. The buttons task
is as described in §3. We additionally consider two-agent, and three-agent rendezvous tasks in which
each agent must simultaneously occupy a specific rendezvous location before individually navigating
to separate goal locations.

We compare DQPRM’s performance against three baseline algorithms: the centralized QRM (CQRM)
algorithm described in §3.2, independent q-learners (IQL) [29], and hierarchical independent learners
(h-IL) [30]. Because of the non-Markovian nature of the tasks, we provide both the IQL and h-IL
agents with additional memory states. In the buttons task, the memory states encode which buttons
have already been pressed. In the rendezvous task, the memory state encodes whether or not the team
has successfully completed the rendezvous.

Each IQL agent learns a q-function mapping augmented state-action pairs to values. That is, the ith
agent learns a q-function qi : Si × SM ×Ai → R, where Si, Ai are the local states and actions of
the agent and SM is the finite set of memory states, commonly observed by the entire team.

Our implementation of h-IL is inspired by the learning structure outlined in [30]. Each agent uses
tabular q-learning to learn a meta-policy — which uses the current memory state to select a high-level
option — as well as a collection of low-level policies — which implement those options in the
environment. The available options correspond to the high-level tasks available to each agent. For
example, A1 in the buttons task is provided with the following three options: remain in a safe
(non-colored) region, navigate to the yellow button, and navigate to the goal location.

In all algorithms, we use a discount factor γ = 0.9, a learning rate α = 0.8, and an exploration
parameter that is annealed from ε = 0.3 to zero as training progresses. In the training of the DQPRM
agents, if an agent observes a shared event, then with probability 0.3, it is provided with a signal
simulating successful synchronization with all collaborators.

All tasks are implemented in a 10x10 gridworld and all agents have the following 5 available actions:
move right, move left, move up, move down, or don’t move. If an agent moves in any direction, then
with a 5% chance the agent will instead slip to an adjacent state. Each training episode lasts 1,000
time steps. We perform periodic testing episodes in which the agents exploit the policies they have
learned and team’s performance is recorded.

Figure 3 shows the experimental results for each algorithm over 10 separate runs per domain. The
figures plot the median number of steps required to complete the team task against the number of

(a) Two-agent rendezvous task. (b) Three-agent rendezvous task. (c) Buttons task.

Figure 3: Algorithm performance on various tasks. The y-axis show the number of steps required
for the learned policies to complete the task. The x-axis shows the number of elapsed training steps.
Note that the scale in (a) is logarithmic, whereas it is linear in (b), (c).

7

elapsed training steps. The shaded regions enclose the 25th and 75th percentiles. We note that the
CQRM baseline is only tested in the two-agent scenario because this centralized approach requires
excessive amounts of memory for the three-agent tasks; storing a centralized policy for three-agents
requires approximately two billion separate values.

While the h-IL baseline marginally outperforms the proposed DQPRM algorithm in the two-agent
rendezvous task, in the more complex tasks involving three agents, DQPRM significantly outperforms
all baseline methods. The key advantage of the DQPRM algorithm, and what allows it to scale well
with task complexity and the number of agents, is that it trains the agents separately using their
respective single-agent task projections. This removes the problem of non-stationarity and also allows
the agents to more frequently receive reward during training. This is especially beneficial to the
types of tasks we study, which have sparse and delayed feedback. We further discuss the differences
between DQPRM and hierarchical approaches to multi-agent learning in §6.

6 Related Work

Task decomposition in multi-agent systems has been studied from a planning and cooperative control
perspective [16, 17, 18, 7]. These works examine the conditions in which group tasks described
by automata may be broken into sub-tasks executable by individuals. [8, 6] provide methods to
synthesize control policies for large-scale multi-agent systems with temporal logic specifications.
However, all of these works assume a known model of the environment, differing from the learning
setting of this paper.

The MARL literature is rich [35, 11, 12, 23]. A popular approach to MARL is IQL [29], in which each
agent learns independently and treats its teammates as part of the environment. [10, 19, 31, 27, 25, 26]
decompose cooperative team tasks by factoring the joint q-function into components. Our work,
which examines cooperative tasks that have sparse and temporally delayed rewards, is most closely
related to hierarchical approaches to MARL. In particular, [22, 9] use task hierarchies to decompose
the multi-agent problem. By learning cooperative strategies only in terms of the sub-tasks at the
highest levels of the hierarchy, agents learn to coordinate much more efficiently than if they were
sharing information at the level of primitive state-action pairs. More recently, [30] empirically
demonstrates the effectiveness of a deep hierarchical approach to certain cooperative MARL tasks. A
key difference between task hierarchies and RMs, is that RMs explicitly encode the temporal ordering
of the high-level sub-tasks. It is by taking advantage of this information that we are able to break a
team’s task into components, and to train the agents independently while guaranteeing that they are
learning behavior appropriate for the original problem. Conversely, in a hierarchical approach, the
agents must still learn to coordinate at the level of sub-tasks. Thus, the learning problem remains
inherently multi-agent, albeit simplified.

In this work, we assume the task RM is known, and present a method to use its decomposition to
efficiently solve the MARL problem. The authors of [34, 15] demonstrate that, in the single-agent
RL setting, RMs can instead be learned from experience, removing the assumption of the RM
being known a priori by the learner. This presents an interesting direction for future research: how
may agents learn, in a multi-agent setting, RMs encoding either the team’s task or projected local
tasks. Furthermore, [14, 4] demonstrate in the single-agent RL setting that RMs may be applied to
continuous environments by replacing tabular q-learning with double deep q networks [32]. We note
that this extension to more complex environments also readily applies to our work, which decomposes
multi-agent problems into collections of RMs describing single-agent tasks.

7 Conclusions

In this work, we propose a reward machine (RM) based task representation for cooperative multi-
agent reinforcement learning (MARL). The representation allows for a team’s task to be decomposed
into sub-tasks for individual agents. We accordingly propose a decentralized q-learning algorithm
that effectively reduces the MARL problem to a collection of single-agent problems. Experimental
results demonstrate the efficiency and scalability of the proposed algorithm, which learns successful
team policies for temporally extended cooperative tasks that cannot be solved by the baseline
algorithms used for comparison. This work demonstrates how well-suited RMs are to abstraction and
decomposition of MARL problems, and opens interesting directions for future research.

8

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[2] Filippo Bonchi and Damien Pous. Checking nfa equivalence with bisimulations up to congru-
ence. ACM SIGPLAN Notices, 48(1):457–468, 2013.

[3] Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In
Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge, pages
195–210. Morgan Kaufmann Publishers Inc., 1996.

[4] Alberto Camacho, R Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
Ltl and beyond: Formal languages for reward function specification in reinforcement learning.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages
6065–6073, 2019.

[5] Christos G Cassandras and Stephane Lafortune. Introduction to discrete event systems. Springer
Science & Business Media, 2009.

[6] Murat Cubuktepe, Zhe Xu, and Ufuk Topcu. Policy synthesis for factored mdps with graph tem-
poral logic specifications. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 267–275, 2020.

[7] Jin Dai and Hai Lin. Automatic synthesis of cooperative multi-agent systems. In 53rd IEEE
Conference on Decision and Control, pages 6173–6178. IEEE, 2014.

[8] Franck Djeumou, Zhe Xu, and Ufuk Topcu. Probabilistic swarm guidance with graph temporal
logic specifications. In Proceedings of Robotics: Science and Systems XVI, 2020.

[9] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical multi-agent
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 13(2):197–229, 2006.

[10] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
International Conference on Machine Learning, volume 2, pages 227–234. Citeseer, 2002.

[11] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A
survey of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183, 2017.

[12] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797,
2019.

[13] John E Hopcroft. A linear algorithm for testing equivalence of finite automata, volume 114.
Defense Technical Information Center, 1971.

[14] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
International Conference on Machine Learning, pages 2112–2121, 2018.

[15] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially observable reinforcement learning. In
Advances in Neural Information Processing Systems, pages 15497–15508, 2019.

[16] Mohammad Karimadini and Hai Lin. Guaranteed global performance through local coordina-
tions. Automatica, 47(5):890–898, 2011.

[17] Mohammad Karimadini, Hai Lin, and Ali Karimoddini. Cooperative tasking for deterministic
specification automata. Asian Journal of Control, 18(6):2078–2087, 2016.

[18] Ali Karimoddini, Mohammad Karimadini, and Hai Lin. Decentralized hybrid formation control
of unmanned aerial vehicles. In American Control Conference, pages 3887–3892. IEEE, 2014.

[19] Jelle R Kok and Nikos Vlassis. Using the max-plus algorithm for multiagent decision making
in coordination graphs. In Robot Soccer World Cup, pages 1–12. Springer, 2005.

[20] Ratnesh Kumar and Vijay K Garg. Modeling and control of logical discrete event systems,
volume 300. Springer Science & Business Media, 2012.

[21] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

9

[22] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical multi-agent
reinforcement learning. In Proceedings of the 5th International Conference on Autonomous
Agents, pages 246–253, 2001.

[23] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforce-
ment learners in cooperative markov games: a survey regarding coordination problems. The
Knowledge Engineering Review, 27(1):1–31, 2012.

[24] Rémi Morin. Decompositions of asynchronous systems. In International Conference on
Concurrency Theory, pages 549–564. Springer, 1998.

[25] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: monotonic value function factorisation for deep
multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

[26] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:1905.05408, 2019.

[27] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems,
pages 2085–2087. International Foundation for Autonomous Agents and Multiagent Systems,
2018.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[29] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the 10th International Conference on Machine Learning, pages 330–337, 1993.

[30] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia,
Chunxu Ren, Yan Zheng, Changjie Fan, and Li Wang. Hierarchical deep multiagent reinforce-
ment learning. arXiv preprint arXiv:1809.09332, 2018.

[31] Elise Van der Pol and Frans A Oliehoek. Coordinated deep reinforcement learners for traffic
light control. Proceedings of Learning, Inference and Control of Multi-Agent Systems, 2016.

[32] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the 13th AAAI Conference on Artificial Intelligence, 2016.

[33] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[34] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In Proceedings
of the International Conference on Automated Planning and Scheduling, volume 30, pages
590–598, 2020.

[35] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. arXiv preprint arXiv:1911.10635, 2019.

10

Reward Machines for Cooperative Multi-Agent
Reinforcement Learning: Supplementary Material

8 Q-Learning with Reward Machines

Algorithm 1 shows pseudocode for the QRM algorithm, originally introduced in [14]. The algorithm
learns a collection Q = {qu|S × A→ R|u ∈ U} of q-functions, each corresponding to a separate
policy to follow when in RM state u ∈ U .

At each time step t, the agent takes action at and the MDP progresses to the next state st+1. The agent
uses its current RM state to abstract its new environment state through the labeling function, obtaining
L(st+1, ut) ∈ 2Σ. Each event in L(st+1, ut) causes an RM transition and a resulting reward output.
Note that for a single environment step, the reward machine may transition any number of times
corresponding to the number of events that occurred simultaneously at time t.

Algorithm 1: Q-Learning with Reward Machines
Input: R = 〈U, uI ,Σ, δ, σ, F 〉, L, γ, α
Output: Q = {qu : S ×A→ R|u ∈ U}

1 Q← InitializeQFunctions()
2 for n = 1 to NumEpisodes do
3 u1 ← uI , s1 ← environmentInitialState()
4 for t = 0 to NumSteps do
5 a← getAction(qu1

, s1)
6 s2 ← executeAction(s1, a)
7 utemp ← u1, r ← 0
8 for e ∈ L(s2, u1) do
9 u2 ← δ(utemp, e)

10 r ← r + σ(utemp, u2)
11 utemp ← u2

12 qu1
(s1, a)← (1− α)qu1

(s1, a) + α(r + γmaxa′∈A qu2
(s2, a

′))
13 u1 ← u2, s1 ← s2

14 if u2 ∈ F then
15 break

16 return Q

9 Reward Machine Formalisms

9.1 Reward Machine Transitions on Sequences of Events

Let Σ∗ be the set of all finite strings, including the empty string ε, over elements from Σ. Any string
ξ = e0e1...ek ∈ Σ∗ thus represents a sequence of environment events. Following the notation of [20],
we extend the domain of definition of the transition function δ to U × Σ∗.
Definition 3. (RM transition on a sequence of events) For a reward machine R and sequence of
events ξ ∈ Σ∗, we define the transition over sequence ξ from state u recursively with relations
u = δ(u, ε) and δ(u, ξe) = δ(δ(u, ξ), e), ∀ξ ∈ Σ∗, e ∈ Σ.

In words, δ(u, ξ) ∈ U is the RM state that the sequence of events ξ will cause the RM to transition to,
given it begins in state u. Given our definition of the output function σ for a task RM, we note that
the RM will return 1 if and only if ξ causes the RM to transition to a final state u ∈ F . i.e. R(ξ) = 1
if and only if u /∈ F and δ(u, ξ) ∈ F , otherwise,R(ξ) = 0.

9.2 Reward Machine Projection

To define the projection of an RMR onto a local event set Σi ⊆ Σ, we begin by defining a notion of
state equivalence under local event set Σi [24].

11

Definition 4. (Equivalence class of states) Given a reward machineR = (U, uI ,Σ, δ, σ, F), and a
local event set Σi ⊆ Σ we define equivalence relation RΣi as the minimal equivalence relation such
that for all u1, u2 ∈ U , e ∈ Σ, if u2 = δ(u1, e) and e /∈ Σi, then (u1, u2) ∈ RΣi . The equivalence
class of any state u ∈ U under equivalence relation RΣi

is [u]Σi
= {u′ ∈ U |(u, u′) ∈ RΣi

}. The
quotient set of U by RΣi

is defined as the set of all equivalence classes U/RΣi
= {[u]Σi

|u ∈ U}.

In words, two states u1, u2 ∈ U of the RM R are members of the same equivalence class if a
transition (or a sequence of transitions) exists between them that are triggered by events outside of
the local event set Σi. These equivalence classes represent the collections of states of R that are
indistinguishable to an agent who may only observe events from Σi. Now, we use the equivalence
classes of states [u]Σi

to define the RM projection onto Σi.
Definition 5. (RM projection onto a local event set) Given a reward machineR = (U, uI ,Σ, δ, σ, F)
and a local event set Σi ⊆ Σ, we define the projection ofR onto Σi asRi = (Ui, u

i
I ,Σi, δi, σi, Fi).

• The set of projected states Ui is given by U/RΣi
; each state ui ∈ Ui is an equivalence class

of states from u ∈ U .
• The initial state is uiI = [uI]Σi

.
• Transition function δi : Ui × Σi → 2Ui is defined such that ui2 ∈ δi(ui1, e) if and only if

there exist u1, u2 ∈ U such that ui1 = [u1]Σi
, ui2 = [u2]Σi

, and u2 = δ(u1, e).
• The projected set of final states is defined as Fi = {ui ∈ Ui|∃u ∈ F such that ui = [u]Σi}.
• The output function σi : Ui×Ui → R is defined such that σi(ui1, u

i
2) = 1 if ui1 /∈ Fi, u

i
2 ∈ Fi

and σ(ui1, u
i
2) = 0 otherwise.

We note that δi is not necessarily a deterministic transition function. It’s possible for δi to map some
state-event pairs to sets of states instead of to individual states. However, [16] show thatR is bisimilar
to the parallel composition of its projectionsR1, ... RN (the condition in Theorem 1) if and only if
for every i = 1, 2, ..., N ,Ri is bisimilar to an RM that does have a deterministic transition function.
So, in this work we assume thatRi is always constructed such that δi is deterministic. Practically,
this may be achieved by merging any states ui2 and ui3 if there exists a state ui1 and an event e ∈ Σi

such that δi(ui1, e) = {ui2, ui3}.
Now we formally define the projection of a sequence of events ξ ∈ Σ∗ onto a local event set Σi ⊆ Σ.
Definition 6. (Projection of string of events onto local event subset) Given event set Σ and a local
event set Σi ⊆ Σ, the projection PΣi : Σ∗ → Σ∗i is defined inductively by the relations PΣi(ε) = ε
and ∀ξ ∈ Σ∗, ∀e ∈ Σ:

PΣi(ξe) =

{
PΣi(ξ)e if e ∈ Σi

PΣi(ξ) Otherwise

In definition 6 recall that ε denotes the empty sequence.

9.3 Parallel Composition and Bisimulation

Definition 7. (Parallel composition of RMs) The parallel composition of two reward machines
Ri = 〈Ui, u

i
I ,Σi, δi, σi, Fi〉, i = 1, 2 is defined asR1 ‖ R2 = 〈U, uI ,Σ, δ, σ, F 〉 where

• The set of states is defined as U = U1 × U2.
• The initial state is uI = (u1

I , u
2
I).

• The set of events is defined as Σ = Σ1 ∪ Σ2.
• δ is defined such that for every (u1, u2) ∈ U1 × U2 and for every event e ∈ Σ,

δ((u1, u2), e) =

(δ1(u1, e), δ(u2, e)), if δ1(u1, e), δ2(u2, e) defined, e ∈ Σ1 ∩ Σ2

(δ1(u1, e), u2), if δ1(u1, e) defined, e ∈ Σ1 \ Σ2

(u1, δ2(u2, e)), if δ2(u2, e) defined, e ∈ Σ2 \ Σ1

undefined, otherwise
• The set of final states is defined as F = F1 × F2

• The output function σ : U × U → R is defined such that σ(u, u′) = 1 if u1 /∈ F , u2 ∈ F
and σ = 0 otherwise.

By ‖Ni=1 Ri we denote the parallel composition of a collection of RMs R1, R2, ..., RN . The
parallel composition of more than two RMs is defined using the associative property of the parallel
composition operator ‖Ni=1 Ri = R1 ‖ (R2 ‖ (... ‖ (RN−1 ‖ RN))) [5].

12

Definition 8. (Bisimilarity of Reward Machines) Let Ri = 〈Ui, u
i
I ,Σ, δi, σi, Fi〉, i = 1, 2, be two

RMs. R1 andR2 are bisimilar, denotedR1
∼= R2 if there exists a relation R ⊆ U1×U2 with respect

to common event set Σ such that

1. (u1
I , u

2
I) ∈ R.

2. For every (u1, u2) ∈ R,
• u1 ∈ F1 if and only if u2 ∈ F2

• if u1′ ∈ δ1(u1, e) for some e ∈ Σ, then there exists u2′ ∈ U2 such that u2′ ∈ δ2(u2, e)
and (u1′, u2′) ∈ R.

• if u2′ ∈ δ2(u2, e) for some e ∈ Σ, then there exists u1′ ∈ U1 such that u1′ ∈ δ1(u1, e)
and (u1′, u2′) ∈ R.

10 Local Labeling Functions

10.1 Constructive Definition of Local Labeling Function

Definition 9. (Consistent set of team states) Given agent i’s local state si ∈ Si and the state ui ∈ Ui

of its projected RM, we define the set Bsi,ui ⊆ S × U as

Bsi,ui = {(s, u)|s ∈ S1 × S2 × ...× {si} × ...× SN , u ∈ ui}

For clarity, recall that any state ui in the projected RMRi corresponds to a collection of states from
U . Thus any pair (s, u) ∈ Bsi,ui corresponds to a team environment state s ∈ S such that agent i is
in local state si and to a team RM state u ∈ U belonging to the collection ui ∈ Ui. In words, Bsi,ui

is the set of all pairs of team environment states and team RM states that are consistent with the local
environment state si and projected RM state ui.
Definition 10. (Local labeling function) Given a team labeling function L and a local event set Σi,
we define the local labeling function Li, for all (si, ui) ∈ Si × Ui, as

Li(si, ui) =

{
L(s, u) ∩ Σi, if ∃(s, u) ∈ Bsi,ui

such that L(s, u) ∩ Σi 6= ∅
∅, if ∀(s, u) ∈ Bsi,ui , L(s, u) ∩ Σi = ∅.

We define the following three conditions to ensure that Li : Si × Ui → 2Σi is well defined, and that
the collection L1,..., LN can be used in place of L. These conditions must hold for i = 1, 2, ..., N .

1. To ensure Li maps to singleton sets of local events, or to the empty set, we must have that
for any (s, u) ∈ S × U , |L(s, u) ∩ Σi| ≤ 1.

2. Given any input (si, ui), to ensure that Li(si, ui) has a unique output, there must exist a
unique e ∈ Σi such that L(s, u) ∩ Σi = {e} or L(s, u) ∩ Σi = ∅ for every (s, u) ∈ Bsi,ui .

3. For every event e ∈ Σ, if e /∈ L(s, u) then there must exists some local event set Σi

containing e such that L(s̃, ũ) ∩ Σi = ∅ for every (s̃, ũ) ∈ Bsi,ui
. Here si is the local state

of agent i consistent with team state s, and ui is the state ofRi containing u.

The first condition ensures that L only returns a single event from the local event set of each agent for
any step of the environment. The second condition ensures that given the local state pair (si, ui) of
agent i, the same event singleton {e} ∈ 2Σi is returned by Li regardless of the states of the teammates
of agent i. The final condition ensures that e is returned by L only if it is also returned by Li for
every i ∈ Ie.

10.2 Labeling Trajectories of Environment States

For any finite trajectory s0s1...sk of team environment states, we may use the reward machineR and
labeling function L to define a sequence of triplets (s0, u0, l0)(s1, u1, l1)...(sk, uk, lk) and a string
of events L(s0...sk) ∈ Σ∗. Here ut is the state of team RM R at time t and lt is the output of the
labeling function L at time t. Algorithm 2 details the constructive definition of the sequence.

Similarly, for a collection of local environment states {si0si1...sik}Ni=1 and the collections of pro-
jected reward machines {Ri}Ni=1 and local labeling functions {Li}Ni=1 we may define the collection
of sequences {(si0, ui0, l̃i0)(si1, u

i
1, l̃

i
1)...(sik, u

i
k, l̃

i
k)}Ni=1 as well as a collection of strings of events

13

Algorithm 2: Construct sequence of RM states and labeling function outputs.
Input: s0s1...sk,R, L
Output: (s0, u0, l0)(s1, u1, l1)...(sk, uk, lk), L(s0s1...sk)

1 u0 ← uI , l0 ← ∅, ξ ← emptyString()
2 for t = 1 to k − 1 do
3 utemp ← ut
4 for e ∈ lt do
5 utemp ← δ(utemp, e)
6 ξ ← append(ξ, e)

7 ut+1 ← utemp

8 lt+1 ← L(st+1, ut)

9 L(s0s1...sk)← ξ
10 return (s0, u0, l0)(s1, u1, l1)...(sk, uk, lk), L(s0s1...sk)

{Li(s
i
0...s

i
k)}Ni=1. Here, uit is the state of projected RM Ri and l̃it is the output of local labeling

function Li at time t, after synchronization with collaborating teammates on shared events. Algorithm
3 details the constructive definition of the sequence.

Algorithm 3: Construct sequence of projected RM states and synchronized labeling function outputs.

Input: {si0si1...sik}Ni=1, {Ri}Ni=1, {Li}Ni=1

Output: {(si0, ui0, l̃i0)(si1, u
i
1, l̃1)...(sik, u

i
k, l̃

i
k)}Ni=1, {Li(s

i
0s

i
1...s

i
k))}Ni=1

1 for i = 1 to N do
2 ui0 ← uiI , l̃i0 ← ∅, ξi ← emptyString()

3 for t = 1 to k − 1 do
4 for i = 1 to N do
5 uitemp ← uit
6 for e ∈ l̃it do
7 uitemp ← δi(u

i
temp, e)

8 ξi ← append(ξi, e)

9 uit+1 ← uitemp

10 lit+1 ← Li(s
i
t+1, u

i
t)

11 for i = 1 to N do
12 Ie ← getCollaboratingAgents(lit+1)

13 l̃it+1 ←
⋂

j∈Ie l
j
t+1, (Synchronization step)

14 for i = 1 to N do
15 Li(s

i
0s

i
1...s

i
k))← ξi

16 return {(si0, ui0, l̃i0)(si1, u
i
1, l̃1)...(sik, u

i
k, l̃

i
k)}Ni=1, {Li(s

i
0s

i
1...s

i
k))}Ni=1

We note that the sequences l0l1...lk ∈ (2Σ)∗ and l̃i0 l̃
i
1...l̃

i
k ∈ (2Σi)∗ of labeling function outputs are

sequences of sets of events. However, given our assumption that Li(s
i
t+1, u

i
t) outputs at most one

event per time step, |l̃it| ≤ 1 for every t. This assumption corresponds to the idea that only one event
may occur to an individual agent per time step.

However, the team labeling function L may return multiple events at a given time step, corresponding
to all the events that occur concurrently to separate agents. BecauseR is assumed to be equivalent to
the parallel composition of a collection of component RMs, all such concurrent events are interleaved
[1]; the order in which they cause transitions in R doesn’t matter. So, Given l1l2...lk ∈ (2Σ)∗, the
corresponding sequence of events L(s0s1...sk) ∈ Σ∗ is constructed by iteratively appending elements
in lt to L(s0s1...sk), as detailed in Algorithm 3. Similarly, from sequence l̃i1 l̃

i
2...l̃

i
k ∈ (2Σi)∗ we

construct the sequence of local events Li(s
i
0s

i
1...s

i
k) ∈ Σ∗i .

14

11 Theorems

Theorem 1. Given RMR and a collection of local event sets Σ1, Σ2, ..., ΣN such that
⋃N

i=1 Σi = Σ,
letR1,R2, ... RN be the corresponding collection of projected RMs. SupposeR is bisimilar to the
parallel composition ofR1,R2, ... RN . Then given an event sequence ξ ∈ Σ∗,R(ξ) = 1 if and only
ifRi(ξi) = 1 for all i = 1, 2, ..., N . Otherwise,R(ξ) = 0 andRi(ξi) = 0 for all i = 1, 2, ...N .

Proof. For clarity, recall that ξi ∈ Σ∗i denotes the projection PΣi
(ξ).

Let Rp = 〈Up, u
p
I ,Σ, δp, σp, Fp〉 =‖Ni=1 Ri be the parallel composition of R1, ...,RN . Note that

R(ξ) = 1 if and only if δ(uI , ξ) ∈ F . Similarly,Ri(ξi) = 1 if and only if δi(uiI , ξi) ∈ Fi for every
i = 1, ..., N . So, it is sufficient to show that δ(uI , ξ) ∈ F if and only if δi(uiI , ξi) ∈ Fi for every
i = 1, ..., N . Given the assumption thatR ∼= Rp, we can show by induction that δ(uI , ξ) ∈ F if and
only if δp(upI , ξ) ∈ Fp (see chapter 7 of [1]). Now, given the definition of parallel composition, it is
readily seen that δp(upI , ξ) ∈ Fp if and only if δi(uiI , ξi) ∈ Fi for every i = 1, ..., N [20], concluding
the proof.

Theorem 2. Given R, L, and Σ1, ..., ΣN , suppose the bisimilarity condition from Theorem 1
holds. Furthermore, assume L is decomposable with respect to Σ1, ... ΣN with the corresponding
local labeling functions L1, ..., LN . Let s0...sk be a sequence of joint environment states and
{si0...sik}Ni=1 be the corresponding sequences of local states. If the agents synchronize on shared
events, thenR(L(s0...sk)) = 1 if and only ifRi(Li(s

i
0...s

i
k)) = 1 for all i = 1, 2, ..., N . Otherwise

R(L(s0...sk)) = 0 andRi(Li(s
i
0...s

i
k)) = 0 for all i = 1, 2, ..., N .

Proof. Note that given the result of Theorem 1, it is sufficient to show that for every i = 1, 2, ..., N ,
the relationship PΣi(L(s0s1...sk)) = Li(s

i
0s

i
1...s

i
k) holds. Recall that L(s0s1...sk) ∈ Σ∗ denotes

the sequence of events resulting from team trajectory s0...sk, as described in §10. PΣi(L(s0s1...sk))
denotes the projection of this sequence onto local event set Σi, as defined in §9. Finally,
Li(s

i
0s

i
1...s

i
k) ∈ Σ∗i denotes the sequence of events output by local labeling function Li, assuming

the agent synchronizes with its teammates on shared events.

In words, we wish to show that for every i, the projection of the sequence output by labeling function
L is equivalent to the sequence of synchronized outputs of local labeling function Li. To do this, we
use induction to show that the appropriate notion of equivalence holds at each time step t = 1, ..., k.
We write this statement as lt ∩ Σi = l̃it for every i = 1, ..., N and every t = 1, ..., k. Here, lt is the
output of labeling function L at time t and l̃it is the synchronized output of local labeling function Li

(§10.2).

At time t = 0, l0 and l̃i0 are defined to be empty sets: no events have yet occurred (§10.2). So, trivially
l0 ∩Σi = l̃i0. Furthermore, uI ∈ uiI by definition of the projected initial state uiI . Recall that uI ∈ U
is the initial state of RMR, and uiI ∈ Ui is the initial state of projected RMRi.

Now suppose that at some arbitrary time t, lt ∩ Σi = l̃it and ut ∈ uit for every i = 1, ..., N . We wish
to show that this implies lt+1 ∩ Σi = l̃it+1 and ut+1 ∈ uit+1.

Showing lt+1 ∩ Σi = l̃it+1: Recall our assumption that for any pair (sit+1, u
i
t), Li(s

i
t+1, u

i
t) outputs

only one event, corresponding to the idea that only one event may occur to an individual agent per
time step. Thus for any i = 1, ..., N , lt+1 ∩ Σi = L(st+1, ut) ∩ Σi is either equal to {e} for some
e ∈ Σi or it is equal to the empty set.

• If L(st+1, ut) ∩ Σi = {e}, then Lj(s
j
t+1, u

j
t) = {e} for every j ∈ Ie by definition of L

being decomposable with corresponding local labeling functions L1, L2, ..., LN . Thus
l̃it+1 =

⋂
j∈Ie Lj(s

j
t+1, u

j
t) = {e}. Recall that Ie = {i|e ∈ Σi}.

• Suppose instead that L(st+1, ut) ∩ Σi = ∅.
– If Li(s

i
t+1, u

i
t) = ∅, then clearly l̃it+1 = ∅.

– If Li(s
i
t+1, u

i
t) = {e} for some e ∈ Σi, then there exists some j ∈ Ie such that

e /∈ Lj(s
j
t+1, u

j
t) by the definition of L being decomposable. Thus l̃it+1 = ∅.

15

Showing ut+1 ∈ uit: We begin by using the knowledge that lt ∩ Σi = l̃it+1, and we again proceed by
considering the two possible cases.

• If lt∩Σi = l̃it = ∅, then the projected RMRi will not undergo a transition and so uit+1 = uit.
We know that ut ∈ uit, and that RMR doesn’t undergo any transition triggered by an event
in Σi. So, by definition the projected states ofRi, we have ut+1 ∈ uit. Thus, ut+1 ∈ uit+1.

• Now consider the case lt ∩ Σi = l̃it = {e}. Projected RM Ri will transition to a new
state uit+1 according to δi(uit, e). Assume, without loss of generality, that lt contains events
outside of Σi which trigger transitions both before and after the transition triggered by e.
That is, suppose a, b ∈ lt \ Σi and thatR undergoes the following sequence of transitions:
u′ = δ(ut, a), ũ = δ(u′, e), and finally ut+1 = δ(ũ, b). Because ut ∈ uit and a /∈ Σi,
we know u′ ∈ uit. Because e ∈ Σi, ũ ∈ ũi for some ũi ∈ Ui not necessarily equal to uit.
Finally, because b /∈ Σi, we have ut+1 ∈ ũi. So, ut+1 ∈ ũi for some projected state ũi
such that there exist states u′ ∈ uit and ũ ∈ ũi such that ũ = δ(u′, e) where e ∈ Σi. By our
definition of δi and our enforcement of it being a deterministic transition function (§9), uit+1

is the unique such state in Ui, which implies ũi = uit+1. Thus ut+1 ∈ uit+1.

By induction we conclude the proof.

Theorem 3. Suppose the conditions in Theorem 2 are satisfied, then

max{0, V π
1 (s) + V π

2 (s) + ...+ V π
N (s)− (N − 1)} ≤ V π(s) ≤ min{V π

1 (s), V π
2 (s), ..., V π

N (s)}.

Proof. The Fréchet conjunction inequality states that if E1, E2, ..., EN are a collection of events
with probabilities P (E1), P (E2), ..., P (EN), then:

max{0, P (E1) + P (E2) + ...+ P (EN)− (N − 1)} ≤ P (E1 ∧ E2 ∧ ... ∧ EN)

≤ min{P (E1), P (E2), ..., P (EN)}.

Recall that V π(s0) denotes the expected future undiscounted reward returned byR, given the team
follows joint policy π from joint environment state s0 ∈ S. We begin by noting that V π(s0) is
equivalent to the probability that the task encoded by R is eventually completed, given the team
follows policy π from the initial state s0 and R begins in state uI . To see this, we note that given
an initial team state s0 ∈ S, any (possibly history dependent) team policy induces a probability
distribution over the set of all possible trajectories s0s1... of team states. For any such trajectory, the
corresponding sum of undiscounted rewards returned byR will be 1 if the trajectory results in the
completion of the task described byR, and it will be 0 otherwise. So, V π(s0) is the expected value
of a Bernoulli random variable which takes the value 1 if and only if the task is completed, and thus
is equivalent to the probability of the task being completed under policy π. Similarly, V π

i (s0) which
is defined as the expected undiscounted future reward returned byRi, is equivalent to the probability
of the task encoded byRi being completed given the team follows policy π.

We note that trajectory s0s1... will result in the eventual completion of the task described byR if and
only if there exists some k > 0 such thatR(L(s0, ...sk)) = 1. By the result of Theorem 2 however,
R(L(s0, ...sk)) = 1 if and only if Ri(Li(s

i
0...s

i
k)) = 1 for all i = 1, ..., N . So, the trajectory will

result in the eventual completion of the task described byR if and only if it also results in the eventual
completion of all projected tasks described by Ri, i = 1, ..., N . So, the likelihood of completing
the task encoded by R under policy π is equivalent to the likelihood of completing all the tasks
encoded by the collection {Ri}Ni=1 under the same policy. Thus, with our interpretation of V π(s0)
and V π

i (s0) as these probabilities, we apply the Fréchet conjunction inequality to arrive at the final
result.

16

12 DQPRM Execution Details

Figure 4: Flowchart of DQPRM policy execution.

Figure 4 details the interaction between the
agents and the environment for a single time
step during testing. The ith agent uses its
state si, its local RM state ui, and its learned
collection of q-functions Qi to select an ac-
tion ai. Action ai contributes to the team’s
joint action a = (a1, ..., aN), which induces
an environment transition to a new joint state
s′ = (s′1, ..., s

′
N). Each agent then interprets its

local state pair (s′i, u
i) through its local labeling

function Li to obtain the event e ∈ Σi occurring
at that time step. If e is a shared event, agent
i will synchronize with all collaborating agents
before updating the state of its local RM Ri.
The team is successful if it is rewarded by the
team RMR.

13 A Ten-Agent Experiment

Figure 5 shows the experimental results for a ten-agent variant of the rendezvous task described in §5.
To successfully complete the task, all agents must simultaneously occupy the rendezvous location
before proceeding to their respective goal locations. We observe that while the DQPRM algorithm
converges to a team policy relatively quickly, the baseline methods fail to converge within the allowed
number of training steps. For comparison, we recall that in the two-agent variant of the same task,
h-IL outperforms DQPRM. In the three-agent variant of the task, DPQRM outperforms h-IL but
h-IL converges within the allowed 3e5 training steps. This demonstrates the ability of the proposed
DQPRM algorithm to scale relatively well with the number of agents. This capability is owed to the
fact that by decomposing the task, DQPRM is able to train each agent entirely separately from its
teammates, while ensuring that the resulting composite behavior accomplishes for team’s task.

(a) Ten-agent rendezvous task domain. (b) Ten-agent rendezvous task results.

Figure 5: (a) The initial position of agent i is marked Ai. The common rendezvous location for all
agents is marked R and is highlighted in orange. The goal location for agent i is marked Gi and
highlighted in green. (b) Algorithm performance on the ten-agent rendezvous task. The y-axis shows
the number of steps required for the learned policies to complete the task. The x-axis shows the
number of elapsed training steps.

17

	1 Introduction
	2 Preliminaries
	3 Reward Machines for MARL
	3.1 Reward Machines for Task Description
	3.2 Labeling Functions and Q-Learning with Reward Machines
	3.3 Team Task Decomposition

	4 Decentralized Q-Learning with Projected Reward Machines (DQPRM)
	4.1 Local Labeling Functions and Shared Event Synchronization
	4.2 Training and Evaluating

	5 Experimental Results
	6 Related Work
	7 Conclusions
	8 Q-Learning with Reward Machines
	9 Reward Machine Formalisms
	9.1 Reward Machine Transitions on Sequences of Events
	9.2 Reward Machine Projection
	9.3 Parallel Composition and Bisimulation

	10 Local Labeling Functions
	10.1 Constructive Definition of Local Labeling Function
	10.2 Labeling Trajectories of Environment States

	11 Theorems
	12 DQPRM Execution Details
	13 A Ten-Agent Experiment

